شهرابی، جمال (1390). دادهکاوی. تهران: جهاد دانشگاهی، واحد دانشگاه صنعتی امیر کبیر، 71-24.
شهرابی، جمال (1392). دادهکاوی با کلمنتاین. تهران: جهاد دانشگاهی، واحد دانشگاه صنعتی امیر کبیر، 170-268
کلانتری، خلیل (1391). پردازش و تحلیل دادهها در تحقیقات اجتماعی _ اقتصادی با استفاده از نرمافزار SPSS. تهران: فرهنگ صبا، 344-329.
Baker, R. & Yosef, K. (2009). “The state of educational data mining in 2009: A review and future visions”. Journal of Educational Data Mining, 1(1), 3-17.
Bienkowski M., Feng M. & Means B. (2012). Enhancing teaching and learning through educational data mining and learning analytics: An issue brief. tech. rep, U.S. Department of Education, Office of Educational Technology, Center for Techonolgy in Learning, SRI International, 1, 1-57.
Bogard, M. & James, C. (2012). Using SAS Enterprise BI and SAS Enterprise Miner TM to Reduce Student Attrition. tech. rep, Paper presented at the 2012 SAS Global Forum, Orlando, FL. 1-10.
Bogard, M. (2013). A Data Driven Analytic Strategy for Increasing Yield and Retention at Western Kentucky University Using SAS Enterprise BI and SAS Enterprise Miner. tech. rep, SAS Global Forum 2013 Proceedings. Cary, NC: SAS® Institute, 1-12 .
Campbell J. P. & Oblinger D. G. (2007), “Academic Analytics A New Tool for a New Era”. Educause Review, 42(4), 40-57.
Chin, K.S., Tang, D.W., Yang, J. B. & Wong, S. Y. & Wang H. (2009). Assessing new product development project risk by Bayesian network with a systematic probability generation methodology. Expert Systems with Applications journal, 36(6), 9879-9890.
Ho Yu, C., DiGangi, S., Jannasch-Pennell, A. & Kaprolet, Ch. (2010). “A Data Mining Approach for Identifying Predictors of Student from sophomore to Junior Year”. Journal of Data Science, 8(2), 307-325.
Sanjeev A. P. & Zytkow J. M.(1995), “Discovering Enrollment Knowledge in University. Databases Regularities (1995),” Data mining approach to student retention”. 1st International Conference on Knowledge Discovery and Data Mining (KDD-95), 246-251.
Dekker, G., Pechenizkiy, M. & Vlees-houwers, J. (2009). “Predicting students drop out: a case study”. In 2nd International Educational Data Mining Conference, 2, 41-50.
Druzdzel, M. & Glymour, C. (2009). Application of the TETRAD II program to the study of student retention in US colleges. in AAAI-94 Workshop on Knowldege Discovery in Databases, KDD94, 419-430.
Laura, E.,
Baron, J. D.,
Devireddy, M. &
Sundararaju, V. (2012).
Mining Academic Data to Improve College Student Retention: An Open Source Perspective. In International Conference on Learning Analytics and Knowledge, 12, 139-142 .
Emmet, C. &
Mark, A. (2013).
Leading on the Edge of Chaos, Prentice Hall Press; 1st edition.
García, E. & Romero, C. Ventura S. & de Castro, C. (2011). “A collaborative educational association rule mining tool”. The Internet and Higher Education Journal ,14(2), 77–88.
Grebennikov, L. & Shah, M. (2012). “Investigating attrition trends in order to improve student retention”. Quality Assurance in Education, 20(3), 223–236.
Han, J. & Kamber, M. (2006). Data Mining Concepts and Technique. Elsevier, Third Edition, 7-40.
Herzog, S. (2005). “Measuring Determinants of Student Return VS. Dropout/Stopout VS. Transfer: A First-to-Second Year Analysis of New Freshmen”. Research in Higher Education, 46, 883–928.
Herzog, S. (2010). “Estimating student retention and degree completion time: Decision trees and neural networks Vis-à-Vis regression”. New Directions for Institutional Research, 131 ,17-33.
Huebner, R. A. (2012). “A Survey of Education Data Mining Research”. Research in Higher Education Journal, 1–13.
Jiawei Han and Micheline Kamber (2006). Data Mining Concepts and Techniques. Elsevier, Second Edition, 7-9.
Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis G. & Loumos, V. (2009). “Dropout prediction in e-learning courses through the combination of machine learning techniques”. Computers & Education, 53, 950–965.
Mello, S. K. D., Calvo, R. A. & Eds, A. O. (2013). “student retention, case study”. Proceedings of the 6th International Conference on Educational Data Mining, 316-317.
Mohammed Zafaruddin, G. H. & Jadhav, H. (2013). “Data mining approach to student retention”. International Monthly Refereed Journal of Research In Management & Technology, 2, 98-102
Nandeshwar A. and Chaudhari S. (2009), “Enrollment prediction models using data mining”. Retrieved January journal, 2, 1-17.
Owens, J. (2009). “Student Withdrawal from Higher Education information”. Tech. Rep DCELLS Welsh Assembly Government, 22-63.
Pittman, K. (2008). Comparison of data mining techniques used to predict student retention. PhD thesis, Nova Southeastern University, (UMI No. 3297573, 48-73.
Romero, C. & Ventura, S. (2013). “Data mining in education”. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 3(1), 12–27.
Scott, G., Shah, M., Grebennikov, L. & Singh, H. (2008). “Improving student retention: A University of Western Sydney case study”. Journal of Institutional Research, 14(1), 9-23.
Superby, J., Vandamme, J. & Meskens, N. (2006). “Determination of factors influencing the achievement of the first-year university students using data mining methods”. In Workshop on Educational Data Mining, 37-44.
Zhang, Y., Oussena, S., Clark, T. & Kim H. (2010). Use Data Mining To Improve Student Retention in Higher Education - A Case Study. in 12th International Conference on Enterprise Information Systems (ICEIS), 190-197.
Zlatko (2010). Early prediction of student success: Mining students enrolment data. in Informing Science & IT Education Conference (In SITE), 647-665.
Scheuer, O. & McLaren, B. M. (2011). “Educational Data Mining”. In the Encyclopedia of the Sciences of Learning, Springer, 1075-1079.
Thearling K. (2013),. “An Introduction to Data Mining”. Research In Management & Technology journal, 39(2), 105.
Zaiane, O. R.(2013). Introduction to Data Mining. CMPUT690 Principles of Knowledge Discovery in Databases. Department of Computer Science, University of Alberta, 1-15.