با همکاری مشترک دانشگاه پیام نور و انجمن مدیریت دولتی ایران و انجمن مدیریت رفتار سازمانی

نوع مقاله : پیمایشی

نویسندگان

1 استادیار، گروه گردشگری، دانشگاه علم و فرهنگ، تهران، ایران.

2 دانشیار، گروه مدیریت بازرگانی، دانشگاه پیام نور، تهران، ایران.

3 کارشناس ارشد، گروه مدیریت بازرگانی، دانشگاه پیام نور، تهران، ایران.

چکیده

هدف از این پژوهش، بررسی به‌کارگیری استراتژی تجزیه و تحلیل داده‌های بزرگ و اینترنت اشیاء جهت کسب مزیت رقابتی پایدار در سازمان‌های دولتی با در نظر گرفتن قابلیت‌های تجزیه و تحلیل داده‌های بزرگ است. این مطالعه به صورت یک پژوهش میان رشته‌ا است که ضمن معرفی قابلیت‌های تجزیه و تحلیل داده‌های بزرگ و اینترنت اشیاء، کیفیت داده را به‌عنوان یک استراتژی جهت کسب مزیت رقابتی ارزیابی می‌کند. این پژوهش از نظر مبانی فلسفی پژوهش، مبتنی بر پارادایم اثبات‌گرایی، از نظر رویکرد پژوهش کمی، از نظر استراتژی پژوهش جزء پژوهش‌های پیمایشی است. در گردآوری داده‌ها از منابع کتابخانه‌ای و میدانی استفاده استفاده شد. جامعه آماری پژوهش نامحدود و نمونه آماری این پژوهش شامل 384 نفر از مدیران و متخصصان بوده و روش نمونه‌گیری به صورت تصادفی و در دسترس است که با استفاده از جدول مورگان از جامعه آماری پژوهش انتخاب شدند. برای جمع‌آوری داده‌ها در این پژوهش از پرسشنامه استفاده شده است که روایی آن به صورت روایی محتوا توسط خبرگان و با بهره‌گیری از نرم‌افزار اس.پی.اس.اس مورد تأیید قرار گرفت و پایایی آن با استفاده از ضریب آلفای کرونباخ تأیید شده است. همچنین شاخص‌های برازندگی و تحلیل مسیر با استفاده از نرم‌افزار آموس بررسی شد. یافته‌های پژوهش نشان می‌دهد، کیفیت داده‌ها باید به‌عنوان بخشی از استراتژی جهت ایجاد ارزش برای سازمان‌ها دولتی تبدیل شود. همچنین قابلیت تحلیل داده‌های بزرگ به‌طور مثبت رابطه بین کیفیت داده و مزیت رقابتی را میانجیگری می‌کند. از سوی دیگر عملکرد استراتژیک و مدیریت مالی بر مزیت رقابتی اثر مثبت و معنی‌داری دارند.

کلیدواژه‌ها

عنوان مقاله [English]

Applying Big Data Analysis and IoT Strategies to Achieve Sustainable Competitive Advantage in Public Organizations

نویسندگان [English]

  • Jafar Ahanghran 1
  • Yazdan Shirmohammadi 2
  • Mahmoud Karimi 3

1 Assistant Professor, Department of Tourism, University of Science and Culture, Tehran, Iran

2 .Associate Professor, Department of Business Managment, Payame Noor University, Tehran, Iran

3 Msc. Department of Business Management, Payame Noor University, Tehran, Iran.

چکیده [English]

The purpose of this study is to investigate the application of big data and IoT analysis strategies to gain a sustainable competitive advantage in public organizations by considering the capabilities of big data analysis. This study evaluates data quality as a strategy for gaining a competitive advantage as interdisciplinary research while introducing the capabilities of big data analysis and the Internet of Things. In terms of philosophical foundations of research, this research is based on the paradigm of positivism, in terms of research approach, is quantitative, and in terms of research strategy, is part of survey research. Library and field resources were used in data collection. The statistical population of the research is unlimited and the statistical sample of this research includes 384 managers and specialists using random and convenience sampling methods from the statistical population of the research applying the Morgan table. To collect data in this study, a questionnaire was used, the validity of which was confirmed by experts as content validity using SPSS software, and its reliability was confirmed using Cronbach's alpha coefficient. Also, fit indices and path analysis were evaluated using AMOS software. Research findings show that data quality should become part of the strategy to create value for government organizations. The ability to analyze big data also positively mediates the relationship between data quality and competitive advantage. On the other hand, strategic performance and financial management have a positive and significant effect on competitive advantage.

کلیدواژه‌ها [English]

  • Public Organization
  • Big Data
  • IoT
  • Competitive Advantage
  • Strategy
Akter, S., Gunasekaran, A., Wamba, S.F., Babu M.M., & Hani, U., (2020). Reshaping competitive advantages with analytics capabilities in service systems, Technological Forecasting and Social Change, 159, 120180.
Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research trends on Big Data in marketing: A text mining and topic modeling based literature analysis. European Research on Management and Business Economics, 24(1), 1-7.
Anshari, M., Almunawar, M. N., & Masri, M. (2020). An overview of financial technology in Indonesia. Financial technology and disruptive innovation in ASEAN, 216-224.‏
Ashrafi, A., Ravasan, A. Z., Trkman, P., & Afshari, S. (2019). The role of business analytics capabilities in bolstering firms’ agility and performance. International Journal of Information Management, 47, 1-15.‏
Azeroual, O., Saake, G., & Schallehn, E. (2018). Analyzing data quality issues in research information systems via data profiling. International Journal of Information Management, 41, 50-56.
Byabazaire, J., O'Hare, G., & Delaney, D. (2020, June). Data quality and trust: A perception from shared data in IoT. In 2020 IEEE International Conference on Communications Workshops (ICC Workshops) (pp. 1-6). IEEE.‏.
Chen, H., Chiang, R.,  & Storey, V. (2012). Business intelligence and analytics: from big data to big impact, Mis Q. 36 (4) 1165-1188.
Chiang, R. H., Grover, V., Liang, T.-P., & Zhang, D. (2018). Strategic value of big data and business analytics. In: Taylor & Francis.
Ciampi, F., Demi, S., Magrini, A., Marzi, G., & Papa, A. (2021). Exploring the impact of big data analytics capabilities on business model innovation: The mediating role of entrepreneurial orientation. Journal of Business Research, 123, 1-13.‏
Cillo, V., Rialti, R., Del Giudice, M., & Usai, A. (2021). Niche tourism destinations’ online reputation management and competitiveness in big data era: Evidence from three Italian cases. Current Issues in Tourism, 24(2), 177-191.‏
Côrte-Real, N., Ruivo, P., Oliveira, T., (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value?, Information & Management, 57(1), 103141.
Danaeifard, H.,  Alvani, M., & Azar, A. (2004). Qualitative research methodology in management: a comprehensive approach. Tehran: Saffar Ishraqi Publications. (In Persian)
Elia, G., Polimeno, G., Solazzo, G., & Passiante, G. (2020). A multi-dimension framework for value creation through big data. Industrial Marketing Management, 90, 617-632.‏
Ghasemaghaei, M., & Calic, G. (2019). Can big data improve firm decision quality? The role of data quality and data diagnosticity. Decision Support Systems, 120, 38-49.‏
Ghasemaghaei, M., Hassanein, K., & Turel, O. (2017). Increasing firm agility through the use of data analytics: The role of fit. Decision Support Systems101, 95-105.‏
Gölgeci, I., Ferraris, A., Arslan, A., & Tarba, S. Y. (2019). European MNE subsidiaries' embeddedness and innovation performance: Moderating role of external search depth and breadth. Journal of Business Research102, 97-108.‏
Gupta, S., Drave, V. A., Dwivedi, Y. K., Baabdullah, A. M., & Ismagilova, E. (2019). Achieving superior organizational performance via big data predictive analytics: A dynamic capability view. Industrial Marketing Management. In press.
Hallikainen, H., Savimäki, E., & Laukkanen, T. (2020). Fostering B2B sales with customer big data analytics. Industrial Marketing Management86, 90-98.‏
Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of business research70, 338-345.‏
Jha, A. K., Agi, M. A., & Ngai, E. W. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems138, 113382.‏
Ji-fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011-5026.‏
Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note6(70), 1.‏
Lo, F. Y., & Campos, N. (2018). Blending Internet-of-Things (IoT) solutions into relationship marketing strategies. Technological Forecasting and Social Change, 137, 10-18.‏
Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I. A. T., Siddiqa, A., & Yaqoob, I. (2017). Big IoT data analytics: architecture, opportunities, and open research challenges. ieee access5, 5247-5261.‏
Maroufkhani, P., Wagner, R., Wan Ismail, W. K., Baroto, M. B., & Nourani, M. (2019). Big data analytics and firm performance: A systematic review. Information, 10(7), 226.‏
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169.‏
Mikalef, P., van de Wetering, R., & Krogstie, J. (2021). Building dynamic capabilities by leveraging big data analytics: The role of organizational inertia. Information & Management58(6), 103412.‏
Mikalef, P.; Framnes, V.A.; Danielsen, F.; Krogstie, J.; Olsen, D.H.; (2017). Big data analytics capability: antecedents and business value, 2018, Pacific Asia Conference on Information Systems, Langkawi, Malaysia,
Mishra, D., Luo, Z., & Hazen, B. T. (2018). The role of informational and human resource capabilities for enabling diffusion of big data and predictive analytics and ensuing performance. In Innovation and Supply Chain Management (pp. 283-302). Springer, Cham.‏
Moore, S., (2017). DIrty Data’ Is a Business Problem, Not an IT Problem. Says Gartner, http://www.gartner.com/newsroom/id/501733.
Nagle, T., Redman, T., & Sammon, D. (2020). Assessing data quality: A managerial call to action. Business Horizons, 63(3), 325-337.
Organisation for Economic Co-operation and Development. (2015). Data-driven innovation: Big data for growth and well-being. OECD Publishing.‏
Pivoto, D., Waquil, P. D., Talamini, E., Finocchio, C. P. S., Dalla Corte, V. F., & de Vargas Mores, G. (2018). Scientific development of smart farming technologies and their application in Brazil. Information processing in agriculture, 5(1), 21-32.‏
Raguseo, E., & Vitari, C. (2018). Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects. International Journal of Production Research56(15), 5206-5221.‏
Rahmani, Z., & Shirmohammadi, Y. (2013). Prioritizing the Position Governmental Organization in the Field of Tourism Policy of the Islamic Republic of Iran by using Fuzzy TOPSIS Approach. Quarterly Journal of Public Organizations Management, 2(1), 63-82. (In Persian)
Razmak, J., Al-Janabi, S., Kharbat, F., & Bélanger, C. (2021). Lean Database: An Interdisciplinary Perspective Combining Lean Thinking and Technology. international arab journal of information technology, 18(1), 25-35.
Rialti, R., Marzi, G., Ciappei, C., & Pellegrini, M. (2018). Organizational resilience and big data analytics: Could analytical, automatic, adaptive and agile information systems open the cage?. In LAEMOS conference 2018.‏
Rialti, R., Marzi, G., Ciappei, C., Busso, D., (2019). Big data and dynamic capabilities: a bibliometric analysis and systematic literature review. Manage. Decis, 57 (8), 2052-2068.
Rizvi, S., Pipetti, R., McIntyre, N., Todd, J., & Williams, I. (2020). Threat model for securing internet of things (IoT) network at device-level. Internet of Things, 11, 100240.‏
Saggi MK, (2018). Jain S. A survey towards an integration of big data analytics to big insights for value-creation. Inf Process Manag, 54(5):758-90.
Santoro, G., Fiano, F., Bertoldi, B., & Ciampi, F. (2019). Big data for business management in the retail industry. Management Decision, 57(8), 1980-1992.
Sena, V., & Ozdemir, S. (2020). Spillover effects of investment in big data analytics in B2B relationships: What is the role of human capital?. Industrial Marketing Management86, 77-89.‏
Setia, P., Setia, P., Venkatesh, V., & Joglekar, S. (2013). Leveraging digital technologies: How information quality leads to localized capabilities and customer service performance. MIS quarterly, 37(2), 565-590.‏
Shirmohammadi, Y., & Abedi, F. (2019). Investigating the impact of advertising on the behavioral patterns of tourists in social networks. Journal of Iranian Social Development Studies, 11(42), 99-119. (In Persian)
Shirmohammadi, Y., & Bostan Manesh, A. (2022). Designing a Model for Customers to Buy from Smart Stores in theDays of Corona with an Emphasis on Artificial Intelligence. BI Management Studies, 10(39). (In Persian)
Shirmohammadi, Y., Bostan Manesh, A. (2021). Factor recognition analysis on the performance of employees of service companies in the use of big data information technology. Science and Technology Policy Letters, 11(3), 24-4 . (In Persian)
Shirmohammadi, Y., Nadalipour, Z., & Mukhtar Jozani, M. (2021). The effect of using virtual reality in the Corona era on increasing the number of international tourists - in the post-Corona era. Journal of Tourism and Development, 10(2), 41-54.  (In Persian)
Shirmohammadi., Y,. Hashemi Baghi., Z., Shahsavaan, N. (2018). The Integrated marketing communications and Advanced Information Technology on the Value of the Brand for Tourism Tourism. Journal of Tourism and Development, 7(1), 1-19. (In Persian)
Soni, S., & Singh, A. (2021). Improving Data Quality using Big Data Framework: A Proposed Approach. In IOP Conference Series: Materials Science and Engineering (Vol. 1022, No. 1, p. 012092). IOP Publishing.‏
Spieth, P., Roeth, T., & Meissner, S. (2019). Reinventing a business model in industrial networks: Implications for customers' brand perceptions. Industrial marketing management, 83, 275-287.‏
Sun, S., Hall, D. J., & Cegielski, C. G. (2020). Organizational intention to adopt big data in the B2B context: An integrated view. Industrial Marketing Management86, 109-121.‏
Sundblad, M. (2019). Nordic Big Data and Analytics Forecast. 2018–2022; IDC: Framingham, MA, USA.
Suoniemi, S., Meyer-Waarden, L., Munzel, A., Zablah, A. R., & Straub, D. (2020). Big data and firm performance: The roles of market-directed capabilities and business strategy. Information & Management57(7), 103365.‏
Trabucchi, D., Buganza, T., Dell’Era, C., & Pellizzoni, E. (2018). Exploring the inbound and outbound strategies enabled by user generated big data: Evidence from leading smartphone applications. Creativity and Innovation Management, 27(1), 42-55.
Tweney, D. (2013). Walmart scoops up Inkiru to bolster its ‘big data’capabilities online. VentureBeat. doi: https://venturebeat. com/2013/06/10/walmart-scoops-up-inkiru-to-bolster-its-big-data-capabilities-online.‏
Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems engineering, 164, 31-48.‏
Vermesan, O., & Friess, P. (Eds.). (2013). Internet of things: converging technologies for smart environments and integrated ecosystems. River publishers.
Vidgen, R., Shaw, S., & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research261(2), 626-639.‏
Wahyudi, A., Farhani, A., & Janssen, M. (2018, October). Relating big data and data quality in financial service organizations. In Conference on e-Business, e-Services and e-Society (pp. 504-519). Springer, Cham.‏
Wamba, S. F., Akter, S., & De Bourmont, M. (2018). Quality dominant logic in big data analytics and firm performance. Business Process Management Journal, 25(3), 512-532.
Wiener, M., Saunders, C., Marabelli, M., (2020). Big-data business models: a critical literature review and multiperspective research framework, J. Inf. Technol, 35(1) 66-91.
Wilkins, J. (2019). Big Data and Its Impact on Manufacturing. Available online: http://www.dpaonthenet.net/article/65238/Big-data-and-its-impact-on-manufacturing.aspx.
Williams, J. (2014). Internet of things: Science fiction or business fact?. Harvard Business Review Analytic Services Report, 2-9.‏
Wook, M., Hasbullah, N. A., Zainudin, N. M., Jabar, Z. Z. A., Ramli, S., Razali, N. A. M., & Yusop, N. M. M. (2021). Exploring big data traits and data quality dimensions for big data analytics application using partial least squares structural equation modelling. Journal of Big Data8(1), 1-15.‏
Xu, H., Lin, J., & Yu, W. (2017). Smart transportation systems: architecture, enabling technologies, and open issues. In Secure and Trustworthy Transportation Cyber-Physical Systems (pp. 23-49). Springer, Singapore.‏
Yasmin, M., Tatoglu, E., Kilic, H. S., Zaim, S., & Delen, D. (2020). Big data analytics capabilities and firm performance: An integrated MCDM approach. Journal of Business Research, 114, 1-15.‏